ENVIRONMENTAL PRODUCT DECLARATION

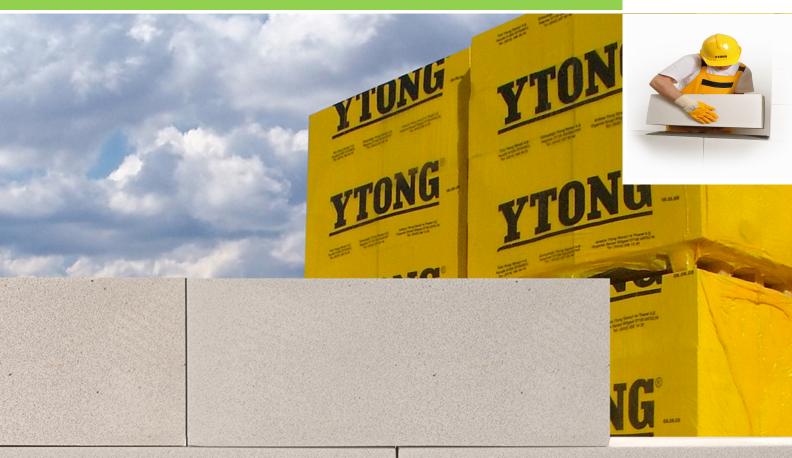
as per ISO 14025 and EN 15804

Owner of the Declaration Türk Ytong Sanayi

Programme holder Institut Bauen und Umwelt e.V. (IBU)

Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-YTO-20150044-IAD1-EN


Issue date 22.04.2015 Valid to 21.04.2020

Ytong® Autoclaved Aerated Concrete

TÜRK YTONG SANAYİ A.Ş.

www.bau-umwelt.com / https://epd-online.com

General Information

Türk Ytong Sanayi A.Ş. **Ytong® Autoclaved Aerated** Concrete Programme holder Owner of the Declaration IBU - Institut Bauen und Umwelt e.V. Türk Ytong Sanayi A.Ş. Panoramastr. 1 Central Production Site – Pendik Factory 10178 Berlin Pendik, 34899, Istanbul / TURKEY Germany **Declaration number** Declared product / Declared unit EPD-YTO-20150044-IAD1-EN Autoclaved Aerated Concrete Block / 1 cubic meter This Declaration is based on the Product Scope: **Category Rules:** This Life Cycle Assessment study is carried out for Autoclaved Aerated Concrete (AAC) Blocks Aerated concrete, 07.2014 (PCR tested and approved by the SVR) produced in the manufacturing plant of TURK YTONG located in Pendik, Antalya, Bilecik and Trakya, Turkey. This EPD is prepared as an average EPD for Issue date Autoclaved Aerated Concrete Blocks product group 22.04.2015 manufactured in these plants. The data used in this study is collected from four manufacturing facilities and Valid to a weighted average is calculated as an annual 21.04.2020 representative value for the year 2013. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Verification Wermanes The CEN Norm /EN 15804/ serves as the core PCR Independent verification of the declaration according to /ISO 14025/ Prof. Dr.-Ing. Horst J. Bossenmayer internally externally (President of Institut Bauen und Umwelt e.V.)

Product

Product description

Dr. Burkhart Lehmann

(Managing Director IBU)

The products mentioned are unreinforced building blocks in various formats made of autoclaved aerated concrete /TS EN 771-4: 2011/. AAC belongs to the porous steam-cured light-weight concrete group.

The ground quartzite is mixed with gypsum, cement, quicklime and recycled AAC materials (slurry and powder) that has been reduced to small pieces, adding water and aluminum powder, in a mixer, until it becomes a watery suspension. It is then poured into a casting mould. The aluminum reacts in an alkaline milieu. Thus, gaseous hydrogen is formed which creates pores in the mass and escapes without leaving any residue. The pores usually have a diameter 0.5-1.5 mm and are filled exclusively with air. After setting once, semisolid raw blocks are created, from which the autoclaved aerated concrete building components are then cut with high precision.

The formation of the final qualities of the building component occurs during the subsequent steam-curing over 5 to 12 hours at approximately 190° C with

approximately 12 bar pressure in steam pressure kettles or autoclaves, as they are called. The used substances create calcium hydro silicates, which correspond to the naturally occurring mineral tobermorite. The reaction of the material is complete when removed from the autoclave. Therefore, the reaction does not take as long as the hardening of concrete. Once the steaming process is complete, the steam is used for other autoclave cycles. AAC blocks are then piled onto wooden pallets and shrink-wrapped in polyethylene wrap.

Application

Mr Olivier Muller

(Independent verifier appointed by SVR)

Unreinforced AAC building blocks are used for bricklaid, monolithic, load bearing and non-loadbearing infill walls. As intended, direct contact with ground water is avoided thanks to the constructional features.

Technical Data

AAC Ytong Blocks demonstrate the following constructional performance:

Constructional data

Name	Value	Unit	
Compressive strength >=	1.5 - 5	N/mm ²	
Gross density	300 - 600	kg/m³	
Tensile strength	0.24 - 1	N/mm ²	
Modulus of elasticity	750 - 2250	N/mm ²	
Thermal conductivity	0.085 - 0.16	W/(mK)	
Water vapour diffusion resistance factor acc. to EN 4108-4	5/10	-	
Moisture content at 23 °C, 80%	4	M%	
Shrinkage as per ZA-PBP-07-01, modified EN 680 must be indicated; adherence to the shrinkage value of < 0.2 mm/m should be guaranteed	0.2	mm/m	

Base materials / Ancillary materials

Name	Value	Unit		
Quartzite	45-65	%		
Portland cement	15-30	%		
Gypsum	2-5	%		
Quick Lime	6-20	%		
Aluminium powder	0.05-0.15	%		
Recycled Ytong Slurry	10-20	%		
Recycled Ytong Powder	4-10	%		

In addition, 40-60% water is used (in relation to the solid substances).

Reference service life

AAC does not change once it leaves the autoclaves. When used as intended, it is boundlessly stable. According to the Sustainable Building Guideline of IBU the average life expectancy of AAC is 100 years.

In this study Reference Life Value is not taken into consideration during the calculations, since the system boundary of this EPD is cradle to gate.

LCA: Calculation rules

Declared Unit

According to the "PCR Guidance-Texts, the functional unit for this product category is defined as 1 cubic meter (m3) of Autoclaved Aerated Concrete (AAC) Block. As a result of this, the life cycle assessment results are presented for 1 m3 of the analyzed product group.

Declared unit

Name	Value	Unit
Declared unit	1	m^3
Gross density	398	kg/m ³
Conversion factor to 1 kg	0.0025	-

System boundary

Type of the EPD: cradle to gate

The system boundaries of this life cycle assessment study are considered as cradle to gate, since all the modules except A1-A3 product stage are not declared within the scope of this study. This means the system boundary covers Ytong AAC Block products from extraction of raw material to the production of finished packed product at the factory gate (cradle to gate).

The product stage contains A1 (extraction, processing, production of raw materials), A2 (Transport to the manufacturer and internal transport) and A3 (Manufacturing operations) modules. These are declared separately.

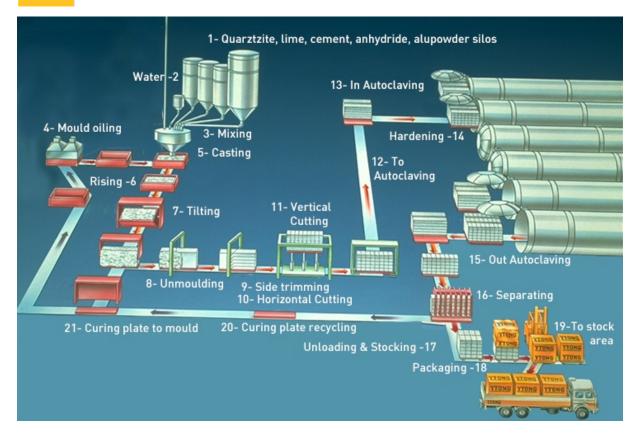


Figure 1: Process Flow of Ytong-AAC Block Production

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

As stated in the system boundary chapter above, only A1, A2 and A3 modules are declared within the scope of this study.

Therefore, there are no scenarios provided below regarding the other modules B1-B7, A4, A5, C1-C4 and D.

In this study, closed-loop recycling was used. Ytong plant utilizes recycled waste (slurry and powder) internally.

LCA: Results

DESC	CRIPT	ION O	F THE	SYST	ГЕМ В	OUND	ARY	(X = IN	CLUI	DED IN	LCA;	MND =	MOD	ULE N	OT DE	CLARED)	
PRODUCT STAGE CONSTRUCTION PROCESS STAGE				EM BOUNDARY (X = INCLUDED IN LCA; I						END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES			
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential	
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D	
X	Х	Χ	MND	MND	MND	MND	MND	MND	MNE	MND	MND	MND	MND	MND	MND	MND	
RESU	JLTS (OF TH	IE LC <i>A</i>	4 - EN'	VIRON	MENT	AL IN	IPACT	: AA(C Block	s /1 m	3					
			Param	eter				Unit		A	1	A2				А3	
		Glob	al warmir	ng potenti	ial		1	[kg CO ₂ -Eq.] 1.25E+2					4.72E+0			3.74E+1	
					ric ozone	layer		[kg CFC11-Eq.] 5.34E-6					3.28E-7			4.25E-7	
	Ac		n potential				[[kg SO ₂ -Eq.] 3.23E-1					2.19E-2			1.40E-1	
ļ			rophicatio				[k	[kg (PO ₄) ³ -Eq.] 5.20E-2				4.97E-3				3.48E-2	
Format						nical oxida			nene-Eq.] 2.86E-2			7.08E-4				6.59E-3	
					sil resourc		_	[kg Sb-Eq [MJ]		5.90E-5 4.17E+2			1.08E-5			4.00E-6	
DECL							C. A /		also Is		_+_	6.95E+1			4.48E+2		
RESU	JLIS	JF IF	E LU	1 - KE	SOUR	CE US	E: A/	C Blo	CKS /	ı mə							
			Parar					Unit		A 1	A2			A3			
Renewable primary energy as energy carrier								[MJ]	1.21E+1			0.00E+0			0.00E+0		
Renewable primary energy resources as material utilization Total use of renewable primary energy resources								[MJ]	0.00E+0			0.00E+0				0.00E+0	
	Non	ise of rer	ewable p	operay as	s energy o	urces	-	[MJ]	1.21E+1 7.90E+2			0.00E+0 7.55E+1			0.00E+0 4.65E+2		
	Non-ren	ewable r	orimary er	nerav as r	material ut	rilization		[MJ]	7.90E+2 0.00E+0				0.00E+0			0.00E+0	
								[MJ]					7.55E+1			4.65E+2	
Total use of non-renewable primary energy resources Use of secondary material								[kg] -				-		-			
Use of renewable secondary fuels								[MJ]	MJ] -			-			-		
				ndary fuels	3		[MJ]		-			- 4.045.0			- 405.4		
DEOL	U TO (se of net			EL OVA	(O A)	[m³]) T F	4.18E-2			1.61E-3			4.42E-1	
RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: AAC Blocks /1 m3																	
Parameter								Unit		A1			A2			A3	
Hazardous waste disposed								[kg]		-		-				1.21E-1	
Non-hazardous waste disposed								[kg]	-			-			4.88E-1		
Radioactive waste disposed								[kg]	-			-			-		
Components for re-use								[kg]						-			
Materials for recycling								[kg]		-			-			-	
Materials for energy recovery Exported electrical energy								[kg]				-	-				
								[MJ]				-					
Exported thermal energy [MJ]																-	

References

PCR Part B

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for Aerated concrete, 12.07.2014 www.bau-umwelt.de

EN 4108-4

Thermal insulation and energy economy in buildings - Part 4: Hygrothermal design values

TS EN 771-4: 2011

Specification for masonry units - Part 4: Autoclaved aerated concrete masonry units

EN 680: 2005 / ZA-PBP 07 01

Determination of the drying shrinkage of autoclaved aerated concrete

SUSTAINABLE BUILDING GUIDELINE

http://www.iisbe.org/iisbe/gbpn/documents/policies/guidelines/Germany_guideline_SB.pdf

TAEK

Turkish Atomic Energy Authority: http://www.taek.gov.tr/en/home.html

TURKAK

Turkish Accredidation Agency: http://www.turkak.org.tr/TURKAKSITE/Default_eng.asp

1999/31/EC and 2003/33/EC:

Council Directive on the Landfill of Waste /1999/31/EC/ and the related Council Decision /2003/33/EC/

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Publisher

| Institut Bauen und Umwelt e.V. | Tel | +49 (0)30 3087748- 0 | Panoramastr. 1 | Fax | +49 (0)30 3087748- 29 | 10178 Berlin | Mail | info@bau-umwelt.com | Germany | Web | www.bau-umwelt.com |

Programme holder

Author of the Life Cycle Assessment

ALTENSIS Tel + 90 216 410 61 35
Kayisdagi Cad. Baris Sk. 2 Fax + 90 216 410 61 53
34750 Istanbul Mail info@altensis.com
Turkey Web www.altensis.com

Owner of the Declaration

Türk Ytong Sanayi A.S.
Pendik Ytong
Fax
34899 Istanbul
Mail
Turkey
Web

+90 216396 66 00 4 +90 216396 19 61 il ytong@ytong.com.tr b http://www.ytong.com.tr